Finding Your Torque: The Way of the Leopard

Most folks know and understand what torque is.  Just in case you don’t remember high school physics, torque is defined as “the cross product of the lever-arm distance and force, which tends to produce rotation” (good ‘ole wikipedia).  When paddling, there are many aspects of basic stroke technique that involve torque.  You exert torque through the paddle to the water, your body exerts some torsion force on the paddle and the boat itself, etc this much is intuitive.  What may not be as intuitive is how an innate metric like torque may actually be missing from key aspects of your stroke technique, leading to diminished performance and even increased risk of injury.

To quote Dr. Kelly Starrett in his book Becoming a Supple Leopard, “A stable, well-organized spine is the key to moving safely and effectively and maximizing power output and force production…midline stabilization and torque are two parts of a unifying system that work in conjunction with each other.”  What does this mean?  In basic terms, he is saying coordination and stability are key to producing and transferring max force.  You may think that this boils down further to say, “if you’re buff and experienced, you’re golden” right?  Not entirely.  Raw strength does not equate to stability and experience does not always equate to better technique.  For example, you may be able to deadlift 1.5x your body weight but do it in a sloppy way.  You may also be highly experienced at performing an exercise but do so with poor technique.  Both situations increase your risk for injury and prove to be limiting factors to improved performance.

Now think of paddling.  Say you compared 3 paddlers of equal experience: Paddler 1 is strong but muscle-bound to the point where they can only take a short stroke, Paddler 2 is very flexible and can reach way out for a super long stroke but resembles a wet noodle when paddling, Paddler 3 has the most picture-perfect technique you can imagine and uses it with a seemingly effortless appearance.  From my choice in descriptors, you can probably assume that Paddler 3 would be the best in a time trial situation and if you had a full crew of paddlers just like this person, it would be a more powerful, efficient, and faster boat than the others.  What makes this paddler so effective compared to the others, given the fact that they all have equal experience?  This is where finding good torque steps in.

If you search Youtube for paddling clinics, just about every speaker and coach talks about setting the blade firmly in the water on the catch.  Some liken the feeling of planting the blade to having it “stuck” in the water as if in instant-dry concrete.  Once a solid catch is obtained, then power is applied to the paddle to pull yourself (and your craft) up to the anchored blade.  While this perspective takes into account the paddle in relation to the water, it tends to overlook what the paddler is doing once a firm anchor is set.  If you get the paddle in the water perfectly but fail to find good torque through your body either because of joint instability, impaired motor control, or lacking of range of motion, you will NOT be able to exert good torque on that paddle.

So how do you know you are giving good torque?  As a coach, what can you look for to know if good torque is being applied by your paddlers?  From the first-person perspective, applying good torque requires you to be stable in neutral (or as close to neutral) spinal posture and have your extremities set and stabilized prior to actually applying power.  The first stroke of a race start is probably the easiest and most intuitive way to find optimal torque because slow movement is generally easier to coordinate.  Anchoring your blade 100% and setting yourself up to have your back straight, shoulder blades set down/together, feet braced against the foot stops, thigh pressing into the gunnel, and hands “pre-loading” the paddle, gives you stability before the GO.  In setting up this position and using your muscles to make yourself as rigid as possible, you are using muscular torque to compress and stabilize your joints while taking up slack along your body frame, in turn making them great conductors of force.  You will have a stronger, quicker and more precise drive on that first stroke just by having that setup.  After you start to pull, practice keeping a firm and rigid frame through the pull to ensure you are not losing torque along the way.

As a coach, you can watch for paddlers holding good posture throughout the stroke cycle.  Assuming the paddler is coordinating their paddle to your ideal, look for signs that they may be losing torque along the way and try to troubleshoot why this is happening (is it from lack of stability, lack of coordination, or lack of flexibility?).  Dr. Starrett refers to movement patterns that diminish torque to be “faults” and gives them clever and funny names such as the Stripper Fault (having your booty pop up before the bar lifts when doing a good morning squat).  Here are some common “faults,” complete with funny names, that I see in paddlers losing torque:

Neck Crane Fault

Neck Crane Fault

1.  Neck Crane Fault: cranking your head up to look forward (say at the timing box) while you flex your trunk forward on the reach diminishes the stability of your shoulder blades before the catch.

Head Banger Fault

2.  Head Banger Fault: after entry and anchoring the blade, some paddlers will throw their head down violently in attempt to get better drive.  Instead you are committing your neck muscles and scapular stabilizers to decelerating your bowling ball-weighted head instead of applying force to the paddle.

Drawbridge Fault

3.  Drawbridge Fault: during recovery and reaching forward, the paddler rounds their back either as if slumping in a chair or sidebending (due to rotation) resembling a curved bridge.  This unlocks the connection between your hips, pelvis and spine while destabilizing your upper body to take a good pull.

Roll Up Fault

4.  Roll Up Fault: after initiating the pull, the paddler’s pelvis rocks backwards, rounding the low back, and this rounding curve rolls up the spine to the head like a sinus wave.  This is a dynamic fault that destabilizes your whole system and can actually start as a result of the Drawbridge Fault.

Knock Knee Fault

5.  Knock Knee Fault: the paddler draws their knees together during the pull phase instead of pressing the outside leg into the gunnel and foot against foot stop.  This fault diminishes the connection between paddler and boat, decreases leg drive power, and destabilizes the pelvis leading to more instability up the chain.

Chicken Wing Fault

6.  Chicken Wing Fault: when anchoring the blade, the paddler’s elbows go from tipped up towards the sky to down to the water, giving the appearance like they are doing the funky chicken dance.  The apparent movement at the elbow is actually from the paddler not being able to stabilize their shoulders against the increasing load at the paddle while anchoring.  This diminishes how quickly they can anchor the paddle and delays the point where they can produce force during the drive.

Choo Choo Fault

7.  Choo Choo Fault: when pulling, the paddler breaks at the outside elbow, bending it and drawing it back making them appear like the crank of a locomotive as the wheels spin.  Bending the bottom elbow during the pull prior to initiating recovery diminishes torque because there is movement occurring along what should be a solid frame.

(I’m sure I can think up many more faults, but I’m all out of zany nicknames right now)

When practicing finding torque, I wrote earlier that going slow is key.  In the basic sense it’s easier to coordinate your body.  When the rate increases, most paddlers’ mental focus goes from ensuring good pulls and form to just staying in time.  I recommend drills that focus on strokes from dead stop or pause-type drills at a low rate to learn how to find torque.

Master torque application and you may yet become a supple water leopard!  Rawr!

Sidenote: I am in no way affiliated with Dr. Starrett except in being a fellow physical therapist.  I believe his book is a terrific guide to what physical therapists try to get their patients to understand everyday.  If you get a chance to read the book, you’ll be miles ahead of the average athlete in terms of knowing how to minimize your risk for injury and improve your potential for improved performance.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s