Author Archive

Depression, Me, and You

I’ve suffered from depression all of my adult life.  A few days ago, I felt sadness, pain, and worthlessness unlike anything in recent memory.  I wanted to end my life and was the closest I’ve been to ever following through.  Fortunately, I did not.

Depression is a serious and rising global problem with 264 million people of all ages suffering from it and 800,000 people dying from suicide each year (World Health Organization, 2020).  To me, 264 million people out of the world’s 7.8 billion seems insignificant, but we should realize that the statistics will only count actual diagnosed cases (those created through an organized, reporting health care system) and not people who remain undiagnosed or who take their lives before being diagnosed.

Regardless of what the statistics say, my point in writing this is to spread awareness for a mental health disorder that is often mischaracterized, misunderstood, and often invisible to everybody except the person suffering from it.  As dragon boat is a team sport involving relatively large groups of people, chances are extremely high that multiple members of YOUR team suffer from depression and that fellow paddlers may not even be aware.

“How are you?”
“Good and you?”

How many of you bust out this script multiple times on a daily basis?  I know I will say these words as automatically as smiling, shaking a hand or giving a friendly hug whenever seeing friends, acquaintances, or even family.  Even if I’m hurting on the inside, I hate the idea of sharing that pain with others who appear so…normal on the outside.  Even if they are also hiding depressive symptoms, it hurts me to think about pushing the weight of my sorrows upon them.  This is, as I’ve come to realize, a common challenge with depression.  That being said, this realization doesn’t help my ability to overcome my reservations with casually sharing my true feelings at any given time.

The same phenomenon would happen all the time when I was a paddler.  I’d be surrounded by 19+ other people I loved and cared for.  I knew they ALL cared for me but through all the meals, jokes, blood, sweat, and tears we shared, I never once let on that I could be feeling symptoms of depression.  Conversely, I never saw anybody else showing signs of depression and felt like I must be the only person on the team grappling with those feelings.

When I was coaching, things become so much worse for me internally.  I felt like the role of “coach” required me to insulate myself somewhat from the rest of the team; as if I was a leader who needed a level of inaccessibility from those I lead in order to maintain authority, impartiality, respect, and an air of professionalism.  Stress was a daily opponent.  Stress over meeting weekly performance goals, recruitment strategies, moderating team dynamics, creating workouts, race day planning, and the self-doubt and frustration that came with any perceived shortcomings or apparent failures ate away at my soul without anybody (I think) ever seeing it.  I wore a good mask, a good smile, and used an encouraging voice every practice and race that I attended.  When I finally gave up the coaching role and simply paddled for a season, I was almost happy to hear and see my replacement’s stress and frustration with the new role.  To think of somebody suddenly be acutely aware of my own struggles was oddly fulfilling (sorry Huy).

Dragon boat is a sport that is accessible to all sorts of people at every level of fitness.  It can offer incredible amounts of camaraderie, love, and support between all members and all teams.  To be a dragon boat paddler is to be part of a global community.  One of the greatest strengths of dragon boat is also its greatest weakness.  Teams are just SO large with gatherings so loud, boisterous, action-packed, and “happy” that they often don’t provide a comfortable way for people to connect and share personal challenges.

Call to Action

As a dragon boat paddler, I challenge you to take the time this week to connect with a fellow teammate you don’t often talk with and offer the time and space to get past the usual pleasantries of the usual “Wassup.”  You don’t have to pry, try to “fix” them, or give feedback, just actively listen.

For team leaders, I challenge you to plan a team event this month to break into small groups of 3-4 and give 5 minutes per person to voice their replies to general prompts like, “this week I struggled with…”, “something I felt good about today was…”, or “something I feel inside that nobody knows about is…”.  Make rules that anything that is spoken about stays confidential, does not leave the small group it’s shared with, and isn’t brought up outside the event unless by the person who shared it.  I think such an opportunity can provide teammates a safe space to relate to each other in ways not generally seen with team events and can really strengthen the bonds between everybody; helping team cohesion and maybe, just maybe, saving lives.

If you are considering suicide and reside in the US, the Suicide Prevention Lifeline is always ready to listen.  Call them at 1-800-273-8255.

I want to live and I know you do too.  You are not alone.  I also want to hear from you directly, even though we may not have ever met in person.  My number is 1-415-987-6328.


Watt’s it all about?

Yes, it’s been years since I’ve last written.  No, I have NOT returned to paddling…but I have been interested in writing a short article about power, metering, and paddling for a while now.  Since largely leaving the paddling “scene,” I’ve fallen (quite literally, at times) back on road cycling to maintain some semblance of physical fitness.  For those of you looking for a great way to cross-train for aerobic fitness, I highly suggest it.  Not only do you not need to wear a PFD, but you get to see the scenery actually change through the workout in a shorter period of time if, say, you rode at 16+mph for over an hour.  But I digress.  A few years ago I bought a time trial bicycle (you know those weird “triathlon” bikes with the T-shaped aero bars and the oh-so-awesome solid rear disc wheel?) and tried to work on getting better PR’s during a 10-mile oval ride.  The bike was aero and fast but I found I had a hard time pacing such a longer event.  The first 4 miles would be pretty good feeling, the second would be terrible, and I had a 50/50 chance of giving up during the last 2 miles to the finish line.  I ended up getting a pedal-based power meter that could show me my real-time power output.  Not only was it helpful to know my performance in the moment, but also was a great tool to help me pace the event and develop a better internal “fuel gauge.”

My ride experience is explained by a term called Functional Threshold Power or FTP.  FTP is defined as the average power (or work done over time) for an hour-long, best effort.  The reason for this has been explained that above your FTP wattage, your muscles will start to accumulate more lactate than it can clear, resulting in progressively lower performance.  At or below that FTP level, your muscle is utilizing oxygen as its main fuel source at least as much as anaerobic fuel sources, which means it’s more sustainably fueled.  In cycling and other endurance sports where power meters are more normally implemented, FTP tests can be performed using hour-long or even 20 minute-long sessions.  While most dragon boat races are a great deal shorter than an FTP test and rely more upon anaerobic energy sources, IMO FTP is still a relevant metric to know in terms of pacing an effort for sustained and consistent performance.  It basically boils down to: paddling at your FTP will get you within PR territory for a 20 minute effort and going harder will mean you will fatigue sooner.  As an experiment, I’ve tried multiple consecutive efforts on the same day with adequate rest between bouts using 1) a stepped, progressive power output in, say, 3 phases 2) just holding X% greater than my FTP for the whole thing and 3) going a bit too hard early on and then trying to hold out till the end.  The results?  I found that my average power output was about the same for each attempt and the finishing times were very close as well, despite very different power profiles.  This may support what you may already understand as an athlete, that there is a give and take to your performance during a race event.  Burn out early, finish weak.  Ease up between start/power sets and have some in the tank for the finish.

How does paddler power output manifest in team performance?  In sports where quick acceleration can mean the difference between winning/losing, power to weight ratios can be a priority, meaning high power and low weight is better.  In a 500m race, the only critical point of acceleration is during the start as typically hull speed doesn’t vary that much for the remainder of the event.  As dragon boats plus crew are generally heavy and water resistance is a major resistor to hull speed and acceleration, I’d say that power:weight is not a priority for dragon boat as it would be for, say, crew or OC.  So what?  It means that a crew that is heavier but who can pump out more watts during the first 30 or so strokes will likely beat the crew that is lighter and less watts.  High power output is important for the start and in any phase of acceleration (ie power sets and finish, if your race strategy utilizes them).

How do you produce more power?  Since power is defined as the work being done over a period of time, there are 3 immediate methods assuming your technique is efficient: paddle the same effort but at higher rate, paddle harder per stroke at the same rate, or paddle harder AND faster.  This is primary explanation for when you see multiple boats with very different technique and/or paddling rates racing neck and neck.  They are all travelling at about the same steady velocity, which requires approximately the same power output to overcome hull drag.  The winning team presents, at some point during the race, a better average power output.  This is where paddling fitness and efficiency come into play.  You may make the right number of watts but have poor technique and or poor fitness which makes it unsustainable and lowers your average output over the race course.  As far as which of the 3 methods to producing more power should be emphasized, I would say paddling harder at increased rate is the way to go.  It’s probably what comes naturally anyway, but the pitfall is that amateur paddlers will decline in paddling efficiency/technique in this situation (how many racers look composed and efficient during the finish at YOUR club regattas?) likely resulting in less power boost than desired or even less power altogether.

Practical suggestions to developing this on the water would be to gradually bring the boat up to whatever effort/speed the crew feels to be a competitive race pace.  Practice bumping the effort per stroke and allowing the rate to “naturally” build.  Hopefully you are seeing the boat speed increase.  You can explore the crew’s red line in the same manner by practicing a maximal (but best technique) effort with race pace as the starting point.  At some point there will be a plateau in speed which reflects the crew’s fitness and technique limitations.  These drills, along with how your crew feels during/after them and if they can actively recover while still holding race pace, can be a “match” you can decide to burn during a race.  The more fit your crew is, the more matches they can afford to burn during the race as the situation calls for before overall performance drops.

As far as physical training and fitness goes, I still see many paddlers putting a lot of time in power lifting and into gaining muscle mass by lifting weights.  Power lifting and hypertrophied muscles can help your power and strength, but the pure anaerobic nature of these activities means you are developing the physical abilities that will likely ONLY HELP DURING THE RACE START.  Yes.  You read it right.  If you haven’t heard it before, allow me to bust a myth right now.  You don’t need big muscles to race well in the sport of dragon boat.

This is where the article comes full circle and I applaud you for making it this far.  Maximizing power output over events lasting greater than several seconds relies heavily on the athlete’s ability to utilize aerobic, NOT anaerobic, energy sources and metabolic systems.  Back to cycling, an olympic-level, male track cycling sprinter may weigh 200+ lbs and put out 2200+ watts for a handful of seconds because that’s what their event calls for.  Contrast that with a male pro road cyclist who weighs 150 lbs but is able to sustain 400+ watts for over an hour.  To put those watts into perspective, an average person would struggle to make even 800 watts for 1-2 seconds on the bike.  The ability to sustain high amounts of power for over several seconds is not developed by lifting weights or power lifting.  It’s by training longer duration efforts at the desired power output.

martin forstemann

What does that mean for best training carryover?  There’s no replacement for water time and aerobic training should be a priority for paddlers.

Disclaimer: This article isn’t about slamming weight lifting or power lifting or any other form of cross training or off-water exercise.  Anything that improves your fitness can help paddling performance.  The goal of the post is to explore the role of power as a tool for performance measurement and what training can translate to better power output on the water and biggest performance gains when racing.


That lovin’ feelin’

“Whoaa that lovin’ feelin.”

When I wasn’t yet a coach, I remember ALWAYS being seated in rows 5-7.  I felt good because I felt like I was part of the engine room…you know, that part of a vehicle that makes it go?  It was like no other part of the boat mattered.  Power decided everything and power was what we had with a bunch of beefy dudes farting and smelling up the middle of the boat (sorry rows 8+).  We always were trying to bump the rate and just go faster.  At every rest break, we’d get yelled at by folks in rows 1-4.  It became bad for the team inter-personally and performance-wise to have such segregated sections of the crew; each with their own apparent roles and lack of empathy for each other.  At the time, all I thought was that the timing box was a place to chill out and just paddle easily in time like a drone, never changing, rigid and inflexible.  Rate nazis….

After becoming a coach, I suddenly had the whole crew looking to me to address things and the best way I could was to realize that, yes, certain areas of the boat had advantages and disadvantages to making the boat perform better.  I had to establish clear roles and responsibilities to sections of the crew while also giving the crew common goals and guidelines to being tighter as a whole.

This post is an ode to the timing box and what I feel it takes to create a good one.

What is the timing box?

It’s traditionally the front section of the boat involving rows 1-2 or even to row 4.  I always likened the section of the crew to the “brains” of the boat, not just because they were typically female paddlers (no offense fellas) but because there are several unique reasons why they control the way a boat races and runs while also having some unique limitations to how they cannot control the boat.

Generally speaking, the benches of the timing box are occupied by physically smaller and more experienced paddlers.  If you’ve never sat up there, try it some day at a practice as it can be eye-opening.  The gunnel curves inwards acutely as you get to row 1, forcing you to rotate your body WAY more to get good paddle attack angle.  The floor also slopes upwards slamming your thighs/knees into your chest, limiting your reach.  Smaller paddlers often can cope with the cramped space better with less compromise to their stroke technique.  Weight distribution of the boat fore/aft is also a consideration, especially when there may be a drummer basically sitting  on the very bow of the boat.  Too heavy up front and you might be taking on a bunch of water at speed due to the wake, too heavy in back and paddlers up front can’t even bury their blades in the water fully in addition to plowing the boat through the water like a swimmer with their feet low and head bobbling above the surface.

It’s a section of the boat where a paddler may only get visual feedback on timing from 1-3 paddlers, if at all.  Timing almost entirely becomes a task that falls upon inter-row communication and proprioceptive feel (your body sense).  Everybody behind the timing box sees what they do and any fluctuations in paddling rate or technique ripple backwards through the crew, causing either amplified chaos or unified modulations.  On race day, their connection to the drummer helps to further unify the boat based on the crew’s chain of command (hmm, future post maybe?).  Clearly, experience goes a long way in managing a group of 16 other paddlers through a crazy game of telephone.

Back when SFL was in its hey-day, crew rostering was always being tweaked from rows 3-10 but rarely in 1-2.  At practices, I’d always be chatting with the timing box during rest breaks between sets for feedback on how the boat felt to them, what they thought we could change, and how they felt we could execute those changes.  The reason for putting the timing box feedback first was that they knew when changes were happening in the boat without them initiating it.  Their feedback gave great insight into various cause/effect issues we’d run into (eg rushing, clean settle into race pace, acceleration on finish).  Our timing box was so used to being with each other, row 1 was even occupied by identical twins!  Now that takes being on the same page to a whole new level.  (I’m not saying you need identical twins on board just to make things work, but it certainly worked for us!).

An experienced timing box is like the carburetors or fuel injection system of your car.  They signal for more, the engine pours on the power.  They ease off, the engine eases off.  This is where experience and feel of the timing box make a huge difference in team performance.  The novice timing box is numb to how the boat is running, how the race conditions are, and what needs to be actually run to get max performance.  They will execute the pre-programmed rate jumps just as in practice (if you’re lucky).  Acceleration is notchy at best on the start because all they know is that they must get from 0 to race pace via X many total strokes and the rate changes every Y count.

Compare that to a great timing box that has 4 paddlers working as one mind to feel the race conditions and pace the start in a progressive way to accelerate smoothly and quickly to race pace.  Progressive is the key word.  Say the start is a simple 5-10-10.  The 25 strokes will feature variable stroke technique and variable rate changes between 1-5, 6-15, and 16-25 to drive the boat off the line.  In this level of crew, the start count is almost irrelevant besides the fact that counting for a short period helps unify the crew during a highly technical and highly important part of the race.  The reason why this scenario gives superior performance is that it relies upon the feeling and judgement of the timing box to avoid the crew wasting time, energy, and speed on paddling in a way that fails to accelerate smoothly to race pace.  The same can be said about the settle into race pace.  That rate drop should depend entirely upon the timing box’s decision on how the boat is running once the start count is completed.

Who can’t be in the timing box?

Nobody.  Like I said earlier, the demands of race day may dictate practice arrangements where the timing box is always kept intact and up front, but the front of the boat is a trippy place to be (trust me, I’ve fallen off the bow a handful of times to take a dunk or crowd surf).  Seriously, though, the experience that can be gained from being in rows 1-3 can really help ALL your paddlers develop better skills that can help the entire crew on race day.

Those skills are (in no particular order):

  • how to establish solid timing with less visual feedback
  • how to drive the boat for best performance
  • feel how the crew responds to changes you make (also how long does it take?  what is the limit to changes the crew will respond to?)
  • how to paddle well in water that is more “virgin” and undisturbed from others’ paddles
  • how to communicate with people behind you (without flatulence)

If you have the luxury of practice time to spare (what team actually does, I don’t know), try having all of your paddlers spend some minutes up there at some point during the season.  You will have a crew that understands each other as they never had before and your race results will show it.  Guaranteed or I’ll personally refund your blog view.


Thank you

Wow, in just a few hours after my post about race starts, the views on the blog have jumped in multiples.  I don’t know if it’s because things are worth more after a person dies (figuratively/athletically in this case) or that social media has changed so much in the years since I started writing that my posts can actually reach more readers, but I want to say thank you to those who gave the pages a good looking over.  I started writing because I felt (and still feel) there was so much more to say and think about dragon boat that wasn’t being said before.  It’s nice to know my musings may stimulate further thought and discussion in this great sport among great people.

Power on readers, there’s more to come!


Physics of Acceleration

Acceleration = (final velocity – initial velocity) / (time at finish – time at start)

Basically, the more you change your speed in a shorter amount of time, the more you have accelerated.  Having a race start that features high acceleration is often a strong deciding factor in races of shorter distance and where the average speed of boats are closely matched.  With the 2017 CDBA Sprint Races just having finished this past weekend, it’s time for teams to start working the long game in prep for more 500m racing fun this summer.

What I wanted to write about regarding acceleration in race starts is to address the wide variation in how teams fiddle with stroke counts and stroke technique in hopes of finding an edge over their competitors.

Many coaches I’ve spoken with over the years often have one of two philosophies about race starts: don’t fix what isn’t broken OR try something different.  The leave-it-be coaches may have strong personal histories of success utilizing a certain race start count and stroke style to the point where the idea of trying something new seems like it would hurt more than help team performance.  That fear is completely understandable, and in certain cases, may be quite accurate.  Think of the novice team trying dragon boat for their first race.  The ‘ole 5-10-10 presents both a great mental and physical challenge with plenty of clacking paddles and drenched partners.  Chances are that coaching different rate ratios and stroke techniques would probably be lost upon such a crew because performance is being limited by base skill.  Now, take the elite paddling crew; each paddler with multiple years of racing experience and a high level of fitness.  If we’re referring to a tight-knit crew with at most 1-2 new additions vs a thrown-together “dream team,” tweaking the start might also be a waste of time because the crew has perfected their start and any change is, again, probably a waste of time.

So why chase new and different race starts at all?  My answer is: because no crew is the same as the next.

Getting back to acceleration, the basic philosophy of a race start is to get from dead stop at the starting line to race pace as quickly as possible.  I’ll ignore “as efficiently as possible” because when it comes to 500m or less, who cares who did it the cleanest if they lost to a team with a “messy” start?  If efficiency was poor in the faster team, it just means that team could have accelerated faster next time.  To me, a winning start is plenty efficient no matter how it looks.  Think of how noisy, messy, and almost out of control a drag race car start is compared to driving around your Prius.  The dragster was efficient at accelerating like a beast while the Prius was efficient at saving fuel and not waking the neighbors.  The dragster wins.  Be the dragster.

But how do you know if a start is giving efficient acceleration?  Well, you could test like I used to with a GPS and stopwatch or utilize buoys of known distance.  Find your team’s sustainable race pace and seek to get to that speed ASAP.  There’s the chance for playing around with ratios and technique.  The goal is to eliminate dead-spots in acceleration on the way to full race pace.  The other goal is NOT to completely overshoot race pace and exhaust the crew before you get past the 100m mark (unless 100m is the race).

On to ratios and technique, faster acceleration demands a greater amount of power.  Power is the rate at which work is done.  Each paddle stroke does some work.  Stroke too long and slowly and power is lost.  Rate up too quickly and shorten the stroke, power is also lost.  The sweet spot for every team lies in the middle somewhere.  Physically stronger, more explosive teams can afford to rate up faster because they can put out more power.  Weaker teams may benefit from an intentionally more gradual workup.

Once the start is over, the time to accelerate is done.  Some teams opt for a high stroke rate during the race because it seems “faster.” (as in people moving their bodies/paddles quickly must be making the boat move faster, right?)  Well, again it depends on how the team can physically maintain their chosen race velocity.  If the team can ONLY generate adequate power to sustain that chosen speed, then sure, thrash away.  Their hearts will probably be running a few extra beats/min higher than a team that is able to maintain the same boat speed but at a lower stroke rate.  If you have a paddling erg, you can see how your heart rate changes if you decrease the paddle resistance and hold a higher stroke rate during a time trial vs a slightly heavier pull but lower stroke rate over the same distance.

Case in point, you can see how DW drops the stroke rate but maintains their boat speed while other adjacent teams maintain high stroke rate without gaining ground:

Compare that to our video from the 2009 Sprint Race where SFL was doing dry starts with rather meek acceleration between strokes 0-2.  I definitely do not think the strongest SFL team of its day could stand up to the crews of today, mostly based on the average physical fitness of modern, A-div teams.

I’m still proud to say that I was able to coach a crew of highly dedicated and passionate paddlers of a wide variety of fitness levels and skill into becoming a consistent contender for A-div podiums over the course of several seasons.  Thanks for the memories, everybody!


In the pursuit of gains

As I woke up this morning, I felt like my legs were made of lead and my back like an iron rod.  I get cleaned up and then get ready for my day.  I drag down my giant 4lb sack of MuscleMilk Gainer protein powder down from the shelf and begin to mix it up in a patented plastic bottle that I got roped into buying off Amazon out of sheer convenience of “nutrition.”

“Everyday gains” is what the protein powder sack reads.  But really?  What is it I would be gaining?  Strength?  Power?  Better beach body looks?  Weight?  When I was working in outpatient orthopedic-focused PT clinics, I’d see three basic types of people: sedentary, weekend warriors, and committed athletes.  The sedentary folks may have chronic pain issues that prevented them from being active at all.  Whether the chicken or the egg came first, it no longer really mattered because they were where they were and needed to pull through chronic pain to be healthier.  Their basic fitness could be so low that everyday function was a struggle.  Weekend warriors might’ve been passionate about their hobbies and athletic pursuits but were always struggling with the compromises of real life.  Put in a few miles per day of running after working a desk job and then limping across the marathon finish line to discover aching, swollen knees for weeks afterwards.  They might’ve been fit enough to sprint for the bus to avoid being late to work but the tough compromises in time from a sedentary job and an “active” lifestyle outside of work created a hard balance for their bodies to cope with.  Lastly, the committed athletes occupied another realm of issues that sometimes arose from their efforts to always push the upper extremes of performance.  Stress fractures, early onset of arthritis, torn or degenerated tendons from high-repetition / high-load activities for years and years comes to mind.  Sure, not everybody in the clinic fit into these generic boxes nor did their medical diagnoses always follow these patterns, but they certainly did so frequently.

When I think of athletes trying to progress in their sport, I think of the difficulties that people have in general with keeping a balanced lifestyle and balanced body.  Let’s say you go to the gym and lift weights with a steady pattern over several months.  If you are following a good program, you should be gaining strength and maybe power depending on the workouts you are doing.  At the end of those several months, you have gained strength and power but have you improved performance?  Say you have noticed better performance in the sport of your choosing because your program was well-tailored to be translatable.  Are you then less likely to be injured pushing the upper limits of performance in that sport?  If you can’t say yes to that question confidently, I’d venture to say your training made you gain in certain areas of fitness but did not make you become more balanced.  By gaining in one/several areas of fitness (e.g. strength or power) you may have declined in flexibility, speed, or coordination.

A well-known, local orthopedist named Scott Dye has a phrase he calls the “envelope of function.”  Basically, every organ in your body has an upper limit in its operation where it can function normally without being injured.  Exceed the envelope and you overload the organ, causing reactive problems.  I like to expand that concept into a whole-person perspective: gradually expand your limits through smart and comprehensive training to create a buffer between the minimum required fitness needed to avoid injury and operate in optimal performance.

It’s my personal opinion that athletes who experience nagging pains during and after their pursuits while calling it “all part of the game/sport” are in a degree of denial or possibly simple ignorance.  From working with hundreds of people over the years, I can safely say that there is typically a way to help resolve or address pain arising from sport, often with rather simple concepts and changes.  Often times athletes with that singular-drive mentality and obsession with one element of the sport have a hard time expanding their minds to accept the possibility and value of being a well-rounded individual while also being highly specialized.

The bottom line is that when you think about “bettering” yourself through training and sport, I encourage you to work towards gains in multiple areas of fitness so that as your fitness improves, you remain a well-balanced individual.  Focusing upon one area of fitness and foregoing other elements of good health will end up biting you later on down the road.  Our bodies are good at compromising in the face of unbalanced change.  Don’t let the illusion of gains fool you into thinking you are actually a healthier athlete.


Rounding back? It may be your hips

The Problem

If you see folks who look like this picture below every time they reach, the causes could be multifactorial.  I’ve written about hamstring flexibility before and that can certainly be a contributing factor to losing low back stability on the reach.  Another cause that I haven’t written about is hip mobility and that’s what this post will focus on.

Drawbridge Fault

Because the low back is anchored to the pelvis and the pelvis connects to the hips, leaning forward on the reach involves flexing the hip and rocking the pelvis anteriorly (think of a ball rolling forward).  If all goes well, the low back can stay in a neutral position as if you were sitting bolt upright and simply tipped forward while reaching your arms out.  Now, if the hips stop early in flexion (think of stuffing a basketball under your shirt and bending forward), the pelvis stops and the low back must round for you to continue to reach.

The Solution

Now, while I’m a rehab professional who understands the body very well, I can’t claim to have come up with all the great solutions to helping it along.  For that, I look to those who have done the hard work already with good results.  Kelly Starrett is one of those PTs.  Here are 2 videos of him demonstrating methods to improving hip mobility.

As usual, feel free to leave me your questions and comments below!

 


FTP & Sweet Spot Training

In 2 years time, I’ve forgotten that I used to eat/sleep/breathe/read/write dragon boat blog material daily, what my password for the blog is, the password for the recovery email this blog is linked to, and (probably) how many sore muscles appear from resuming a sport you haven’t done in that amount of time!

What have I been doing all this time?  Well, for starters, being as good a father as I can be!  This is probably the number one reason I haven’t returned to the sport I still love so dearly.  Without a doubt, there are thousands of great parents in the sport of dragon boat  that balance family life with life on the water.  It was my personal decision to take a leave from the water in order to work on being a new parent and I have no regrets.  As for fitness, I’ve turned to riding road bicycles several times per week.  It’s quicker to get in a workout than paddling (IMO) and just as fun while being supremely challenging.

This brings me to the main topic of FTP or Functional Threshold Power.  It’s a term that has been tossed around greatly among cycling communities for its relevance to cycling performance and fitness; however, it is a relevant metric for any human-powered racing sport.  Basically, it is a guide to how hard somebody can perform an exercise for 1 hour.  It is a measurement that helps guide training and exertion during competition.

You might be saying that paddling hard for 1 hour takes completely different fitness than the ~2 minutes it takes for a 500 meter race and you’d be mostly correct.  While different energy stores and muscle fiber types are emphasized depending on the event at hand, FTP has a wide application to athletic performance in a race.  To quote Nate Wilson from the TrainingPeaks website:

It might not seem like FTP has much bearing on ability to sprint, but it very much does. FTP almost can be thought of as a sponge. The higher this number is, the bigger [the athlete’s] sponge is, and the more efforts they can absorb. Every time a race goes hard, it will take less out of the athlete with the higher FTP, and in return they will have more energy left in the tank for a big selection or for the sprint at the end.”

In cycling, FTP is most accurately calculated using a power meter: a device that measures how many watts you are generating as you ride.  To the best of my knowledge, the only power meter specifically for dragon boat paddlers is the Merlin Excalibur II.  The last time I checked, the Excalibur “v1.0” cost over $1k.  Considering how many paddlers there are in a dragon boat, the effectiveness of testing with a power meter quickly boils down to 1) how long can the team paddle hard together to get a good measure on 1-2 paddlers using the meter or 2) is the entire team willing to shell out the cash for 20 Excaliburs (never mind the issue of paddle lengths)?  The other option is using an erg or similar setup.  The one caveat I can think of is replicating how a full boat feels at race pace.  There are likely coaches out there who know more about settings to use to achieve this than I.

As with cycling, the purchase of a power meter is not essential to proper training to improve FTP.  FTP still exists even when it cannot be directly measured and calculated.  A rough estimate can be made using a simple heart rate monitor.  Here’s  how:

30 Minute Threshold Heart Rate Test
Warmup 10-15 minutes with 2-4 x 30 sec hard intervals; hit “Lap” on the device
20 minute set at steady effort where:
–  first 1/3 feels fairly easy, wait for effort to “come to you”
–  second 1/3 lets you know if you can sustain to end
–  last 1/3 feels VERY VERY hard to maintain power but you can to the end

Check your average heart rate for the last 20 minute of the set to estimate the Lactic Threshold Heart Rate.  Using this number, calculate your heart rate zones using the “Bike Zones” table here.  I am opting to utilize the bike zones over the run zones because biking presents greater resistance per “rep” if you will vs running, which may compare more closely the physicality of paddling.  Please note that variables such as body temp, hydration, caffeine, humidity, altitude, and fatigue can influence HR measurements.

Once you have calculated your zones, you can get into Sweet Spot training, which is exercise somewhere between Zone 3-4.  The benefits of Sweet Spot training have been shown to yield the greatest improvements in FTP over time aka bang for your buck.

What’s a Sweet Spot workout look like?  I’ve read cycling coaches suggest 5-20 minute intervals separated by rest interval of 50% the length of the effort (e.g. for 10 min at effort, rest 5 min till the next set).  Apparently the “gold standard” of FTP workouts is 2×20 min at Zone 4.  As you would expect, beginners or novice athletes should start with shorter sets with fewer reps like 3 x 10 min, while elite paddlers may rep it out like crazy (2x60min!) so long as working in the correct zones.

These workouts can be followed all season long, but scaled to match the fitness and needs of the athletes/team.  As with all types of physiological adaptation, FTP is something that changes slowly.  At 1-2 FTP workouts per week, it can take weeks to months for your investment to see returns, but like strength and other power training, a benefit is a benefit and faster is faster.


Long or short pull?

You can’t escape drag…

because drag is part of the word dragon.  Haha!  But seriously, dragon boat is a sport with some serious drag factors to consider primarily in terms of water drag upon the dragon boat itself.  This, however is not the topic of today’s post.  This post will focus on various paddle philosophies in terms of paddle time spent in the water vs out of the water because going fast means maximizing propulsion and minimizing retropulsion.

Excess time spent in contact with the surface you travel upon WILL slow you down

Excess or inadequate time spent in contact with the surface you travel upon may slow you down!

Pull and Recover

Two basic aspects of the stroke technique involve putting the paddle in the water, doing work, and then taking the paddle out to set up for another stroke.  You can’t escape this basic fact, but there are countless ways to make it happen.  Very few of these methods ACTUALLY result in better performance.  The key points to consider are that in one stroke cycle, the athlete transmits force to the water via the paddle in an efficient way to minimize fatigue and use good mechanics and then efficiently move the paddle through the air to begin the next stroke cycle.  Notice how the word “efficient” is a big deal with both pull and recovery.  Every coach seeks to instruct their athletes in the “best” and thus most efficient method for the stroke cycle (of course TBD), but here are some common pitfalls that may help guide your decision to adopt a certain style of paddling in hopes of taking better strokes.

Style 1: Long Pullback

–  This style involves the paddle blade entering at positive angle up front and pulling the blade back to exit at or after the hip, often times involving increased trunk de-rotation or sitting up vertically at the exit to allow for this increased paddle displacement.  It’s a style that is more prominent in smaller paddling craft than dragon boat.  (more on this later)

–  Possible benefits: increased distance of pull through the water may translate to more work performed (force x distance).  Larger amplitude body movements may utilize more muscle groups, reducing single muscle fatigue.  More distance traveled by the boat per stroke means less strokes performed over the whole race, also possibly reducing fatigue.  Slower rates associated with longer pulls may mean paddlers can synch better and use better technique per stroke.

–  Possible drawbacks (no punning around): more work means more force applied over a distance, per stroke.  Doing more work per stroke may actually mean more fatigue by the end of the race depending on what zone of intensity you are working in and what energy stores your muscles are relying upon the most (physiologically less efficient).  This style also relies on longer recovery distance and thus time, reducing the paddling rate and possibly average power.  Some may argue that the long stroke pulls the boat down or reduces lift of the hull, but it seems to be a moot point here’s why.

–  Make it good:  Are you performing more work, more efficiently than with a shorter stroke?  Are you propelling the boat without dragging it down through the pull phase?  At higher boat speeds, you must be skilled enough to exert enough force on the water to avoid from having your paddle actually slow the boat down.

Style 2: Dippy Stroke

–  This style minimizes the pullback at all costs because of some various studies on the power curve during a paddle stroke that correlates directly to the angle of the paddle in the water.  Paddles anchor up front at a positive angle and the exit is completed by or around mid thigh if not sooner.

–  Possible benefits: the rationale I’ve heard with this style is that if positive to perpendicular paddle angles provides the MOST force you can transmit to the water in a stroke, then everything involving negative paddle angle is a waste of energy and should be avoided.  Short strokes also makes higher rates easier to achieve, which may lead to higher average power (work performed over time).

–  Possible drawbacks: faster rates mean more attention to speed of movement.  It’s been well-established that faster movement reduces movement accuracy.  In less-trained paddlers, faster paddling may mean sloppier paddling causing a drop in efficiency and thus average power.  If you are paddling quickly in an inefficient manner, you will get very tired, very quickly.  Not something you want to happen exactly before you cross the finish line.

Make it good:  You have to be skilled enough at higher boat speeds to apply force to the water in a very short amount of time.  You must also be skilled enough as a crew to stay in time to maintain peak average boat power from being N*Sync.

The Snail and Cheetah

Analogy time!  Mr. Snail crawls on the ground without ever stopping contact with it.  I am no snail expert, but they seem quite efficient at crawling for hours at their top speed across long distances (for them) with minimal physiological reserves (no fat, small organs, low carb diet).  They are very efficient at going slow with permanent contact with the surface they are travelling upon.

Now take Mrs. Cheetah.  She blazes around the plains at highway speeds for short periods, making very short but forceful contact with the ground.  This performance is short-lived and fatiguing no-doubt, but wins the race to the weakling gazelle.  If the cheetah and snail were the same size and wanted to race who would win?  Who would care?  It’d be cool to watch!

Maybe a more tangible and intuitive analogy comes in terms of running, something most of us can do or have done.  To run like your lift depended on it, the average person just does it.  No thinking about cadence or forefoot vs barefoot vs heelstrike technicalities, just go all out.  If you were to travel 100 meters as fast as possible, would you try to double-foot long jump the whole way?  No!  While you are powerful every time you move, the energy spent and time spent doing it is not efficient.  Would you try to squeeze in 300 steps within the 100 meters as quickly as you can?  Also unlikely.  You’d get very winded and not be able to move fast because you have very little power behind every stride.  Your body naturally finds a cadence and ground contact time while you give your best athletic effort, to get you moving as fast as you can.  Specific training enhances your ability but doesn’t radically transform your running style.

In sum, paddling with the extremes of long or short pulls may diminish your overall efficiency unless you are specifically trained to maximize performance using those styles.  For recreational or new paddlers with less training, the better and more efficient stroke to utilize is likely a middle-ground, nothing-too-special stroke style.  It’s my opinion that outlier styles are best left to athletes with performance capabilities also far exceeding that of the average paddler or team.

Don’t forget what boat you’re in

One important point that I think many people overlook is quite simply that a dragon boat is not an outrigger or C1-4 craft.  The aforementioned boats have less drag than dragon boats but also much less mass.  Less mass means less inertia, or the force required to change the object’s state of motion.  I have no specific numbers to prove this, but am guessing that if a fully loaded dragon boat and OC-1 were travelling at the same speed, and all athletes stopped paddling at the same time, the OC-1 would drift to a stop before the dragon boat.  If this were true, it’d mean the OC-1 had greater relative water drag to overcome it’s inertia than did the dragon boat.  What this also would mean is that with every recover phase of the stroke, the OC-1 will tend to scrub more speed than will the dragon boat.  This means the OC-1 paddler wants to maximize pull phase time and minimize recovery time.  The dragon boat paddlers have, in this regard, a luxury of being able to decrease time in the water and lengthen time during recovery with less change in boat velocity if racing against the OC-1.

Does paddling as if in a much smaller craft translate directly to the larger craft?  Perhaps but perhaps exceptions can be made with little consequence.


Finding Your Torque: The Way of the Leopard

Most folks know and understand what torque is.  Just in case you don’t remember high school physics, torque is defined as “the cross product of the lever-arm distance and force, which tends to produce rotation” (good ‘ole wikipedia).  When paddling, there are many aspects of basic stroke technique that involve torque.  You exert torque through the paddle to the water, your body exerts some torsion force on the paddle and the boat itself, etc this much is intuitive.  What may not be as intuitive is how an innate metric like torque may actually be missing from key aspects of your stroke technique, leading to diminished performance and even increased risk of injury.

To quote Dr. Kelly Starrett in his book Becoming a Supple Leopard, “A stable, well-organized spine is the key to moving safely and effectively and maximizing power output and force production…midline stabilization and torque are two parts of a unifying system that work in conjunction with each other.”  What does this mean?  In basic terms, he is saying coordination and stability are key to producing and transferring max force.  You may think that this boils down further to say, “if you’re buff and experienced, you’re golden” right?  Not entirely.  Raw strength does not equate to stability and experience does not always equate to better technique.  For example, you may be able to deadlift 1.5x your body weight but do it in a sloppy way.  You may also be highly experienced at performing an exercise but do so with poor technique.  Both situations increase your risk for injury and prove to be limiting factors to improved performance.

Now think of paddling.  Say you compared 3 paddlers of equal experience: Paddler 1 is strong but muscle-bound to the point where they can only take a short stroke, Paddler 2 is very flexible and can reach way out for a super long stroke but resembles a wet noodle when paddling, Paddler 3 has the most picture-perfect technique you can imagine and uses it with a seemingly effortless appearance.  From my choice in descriptors, you can probably assume that Paddler 3 would be the best in a time trial situation and if you had a full crew of paddlers just like this person, it would be a more powerful, efficient, and faster boat than the others.  What makes this paddler so effective compared to the others, given the fact that they all have equal experience?  This is where finding good torque steps in.

If you search Youtube for paddling clinics, just about every speaker and coach talks about setting the blade firmly in the water on the catch.  Some liken the feeling of planting the blade to having it “stuck” in the water as if in instant-dry concrete.  Once a solid catch is obtained, then power is applied to the paddle to pull yourself (and your craft) up to the anchored blade.  While this perspective takes into account the paddle in relation to the water, it tends to overlook what the paddler is doing once a firm anchor is set.  If you get the paddle in the water perfectly but fail to find good torque through your body either because of joint instability, impaired motor control, or lacking of range of motion, you will NOT be able to exert good torque on that paddle.

So how do you know you are giving good torque?  As a coach, what can you look for to know if good torque is being applied by your paddlers?  From the first-person perspective, applying good torque requires you to be stable in neutral (or as close to neutral) spinal posture and have your extremities set and stabilized prior to actually applying power.  The first stroke of a race start is probably the easiest and most intuitive way to find optimal torque because slow movement is generally easier to coordinate.  Anchoring your blade 100% and setting yourself up to have your back straight, shoulder blades set down/together, feet braced against the foot stops, thigh pressing into the gunnel, and hands “pre-loading” the paddle, gives you stability before the GO.  In setting up this position and using your muscles to make yourself as rigid as possible, you are using muscular torque to compress and stabilize your joints while taking up slack along your body frame, in turn making them great conductors of force.  You will have a stronger, quicker and more precise drive on that first stroke just by having that setup.  After you start to pull, practice keeping a firm and rigid frame through the pull to ensure you are not losing torque along the way.

As a coach, you can watch for paddlers holding good posture throughout the stroke cycle.  Assuming the paddler is coordinating their paddle to your ideal, look for signs that they may be losing torque along the way and try to troubleshoot why this is happening (is it from lack of stability, lack of coordination, or lack of flexibility?).  Dr. Starrett refers to movement patterns that diminish torque to be “faults” and gives them clever and funny names such as the Stripper Fault (having your booty pop up before the bar lifts when doing a good morning squat).  Here are some common “faults,” complete with funny names, that I see in paddlers losing torque:

Neck Crane Fault

Neck Crane Fault

1.  Neck Crane Fault: cranking your head up to look forward (say at the timing box) while you flex your trunk forward on the reach diminishes the stability of your shoulder blades before the catch.

Head Banger Fault

2.  Head Banger Fault: after entry and anchoring the blade, some paddlers will throw their head down violently in attempt to get better drive.  Instead you are committing your neck muscles and scapular stabilizers to decelerating your bowling ball-weighted head instead of applying force to the paddle.

Drawbridge Fault

3.  Drawbridge Fault: during recovery and reaching forward, the paddler rounds their back either as if slumping in a chair or sidebending (due to rotation) resembling a curved bridge.  This unlocks the connection between your hips, pelvis and spine while destabilizing your upper body to take a good pull.

Roll Up Fault

4.  Roll Up Fault: after initiating the pull, the paddler’s pelvis rocks backwards, rounding the low back, and this rounding curve rolls up the spine to the head like a sinus wave.  This is a dynamic fault that destabilizes your whole system and can actually start as a result of the Drawbridge Fault.

Knock Knee Fault

5.  Knock Knee Fault: the paddler draws their knees together during the pull phase instead of pressing the outside leg into the gunnel and foot against foot stop.  This fault diminishes the connection between paddler and boat, decreases leg drive power, and destabilizes the pelvis leading to more instability up the chain.

Chicken Wing Fault

6.  Chicken Wing Fault: when anchoring the blade, the paddler’s elbows go from tipped up towards the sky to down to the water, giving the appearance like they are doing the funky chicken dance.  The apparent movement at the elbow is actually from the paddler not being able to stabilize their shoulders against the increasing load at the paddle while anchoring.  This diminishes how quickly they can anchor the paddle and delays the point where they can produce force during the drive.

Choo Choo Fault

7.  Choo Choo Fault: when pulling, the paddler breaks at the outside elbow, bending it and drawing it back making them appear like the crank of a locomotive as the wheels spin.  Bending the bottom elbow during the pull prior to initiating recovery diminishes torque because there is movement occurring along what should be a solid frame.

(I’m sure I can think up many more faults, but I’m all out of zany nicknames right now)

When practicing finding torque, I wrote earlier that going slow is key.  In the basic sense it’s easier to coordinate your body.  When the rate increases, most paddlers’ mental focus goes from ensuring good pulls and form to just staying in time.  I recommend drills that focus on strokes from dead stop or pause-type drills at a low rate to learn how to find torque.

Master torque application and you may yet become a supple water leopard!  Rawr!

Sidenote: I am in no way affiliated with Dr. Starrett except in being a fellow physical therapist.  I believe his book is a terrific guide to what physical therapists try to get their patients to understand everyday.  If you get a chance to read the book, you’ll be miles ahead of the average athlete in terms of knowing how to minimize your risk for injury and improve your potential for improved performance.


A little about carbon fiber

Ever wondered how paddle manufacturers make paddles lighter and stiffer or why some manufacturers indicate certain degrees of fragility to their paddles?  Well, I’m still figuring this out as well, but in so doing, I found a good explanation from Calfee Design, a local business that specializes in carbon fiber repair work for bicycles.

Check it out here!


Turn On Your Off Season

Right now in the Bay Area, most adult recreational dragon boat teams are winding down for their “off-season” due to local races stopping until around April.  Many paddlers will decrease the frequency of water training (if not cutting it out entirely) over the next few months.  If you are a recreational paddler who has practiced and raced from April to September this year, you may be excited to have all this free time to go on a week long vacation for once or sleep in on weekends without the guilt of missing water time with the team.  Don’t get me wrong, the long gap between local races is a perfect time to enjoy yourself away from dragon boat, but consider how your time spent will affect your return to the next season.

Don’t be a couch potato this off-season!

I read a great article by a cycling coach detailing his views on this very subject.  You can read it here.

Essentially, all Bay Area paddlers should recognize that we are not professional paddlers in any shape or form.  It is highly unlikely you are overtraining for dragon boat specifically and, as such, don’t need the time to recover from the sport like pro athletes can.  Realize also that if you decide to take a break from dragon boat this winter, will you inadvertently be taking a break from exercise in general?  Doing this can mean that you will come back next season weaker and more prone to injury than you are right now.

With this understanding, I recommend that everyone enjoy their time outside of a dragon boat but still challenge yourselves to enhancing your fitness in ways you could/did not while during the dragon boat season.  After all, being a recreational dragon boat paddler may mean you struggled to allocate a few hours per week for paddling alone, never mind time to cross train.  Work on enhancing your core stability, losing weight, stretch your tight paddling muscles, cross train in another sport entirely!  The possibilities are endless but all beneficial to keeping good fitness while paving the way to a better and healthier start of the next season.


Goooaaaallll!

It’s that great feeling when you set out to accomplish something and through a combination of blood, sweat, and tears that you see that goal met.  Being a coach is being a leader.  This is somebody who formulates a strong plan and sets goals and methods to lead the team to success by the season’s end.  I previously wrote this article on goal setting and, over my later years of coaching, have found several key points that I’ve found essential to include.

1.  Know what the team wants

I came to a point in my coaching career where I thought I knew myself and where I wanted to be, but that place was not necessarily where the team wanted to go.  As a leader, I made the mistake of assuming that the goals I set were shared among everybody.  Of course, those goals failed and it’s no mystery why!  The saying “You can lead a horse to water, but you can’t make it drink” sums up the need for a coach to fit themselves into the team’s unified goal.  In elite sports, what team plans to NOT make it to the championship?  None.  On recreational teams, such as with dragon boat, the team’s vision of meeting a goal may not be to win, but merely to participate and spend time with other teammates.  Trying to push a recreational team towards a singular goal of winning a championship is as inappropriate as setting a competitive team towards a specific goal of finishing last.  A coach can suggest goals but cannot force a team to adopt them.

2.  Know what to do

After a team accepts the goals a coach suggests, a plan must be established.  Imagine an olympic weight lifter whose training for the games was decided randomly by rolling a die of random activities.  One day, the athlete lifts heavy weights and the next day lifts weights as quickly as possible.  The next day the athlete tries to lift half the weight, twice as many times and then doubles the weight to lift half the reps, etc.  Without a logical progression in specific training or a rationale as to why to choose certain activities, there can be no consistent progress towards any goal.  Random practice results in random results and is not a good way to meet a specific goal.  I recommend writing out a specific plan to get your team from where it starts the season to where it needs to be.

3.  Know what you want

As a coach, you are a person with a certain background and certain biases.  You have feelings and desires, strengths and weaknesses.  Ask yourself, what do you want to accomplish for yourself as a coach and why are you coaching in the first place?  Knowing yourself and understanding your reasons for making decisions is essential for your personal longevity as coach and success in leading the team effectively.

4.  Know how you are doing

The ability to test and re-test is a critical skill to use mid-season.  As you follow your plan, you need to know one thing: is it working?  What lets you know you are headed in the right direction?  Finding a reliable test, be it team fitness challenges, time trials, mid-season race results, etc, provides you with a compass throughout the season that can guide you to sticking to the plan or modifying it along the way.

5.  Put it all together

A team is a collection of individuals.  Get each individual to accept the goal and the path to meeting that goal.  Have them commit to what you say it will take to meet that goal.  Follow the plan to get where you need to be.  Adapt your plan as needed to address unforeseen challenges.  Make sure YOU are not contributing to the team falling short of its goal.  Don’t forget, have fun!


2013 Dragon Boat Paddle Comparisons

It’s been 4 years

since my last survey of dragon boat paddles available to athletes the world round.  With the growing popularity of dragon boat, changes in IDBF paddle dimension allowances, and improvements in manufacturing processes, some brands have flourished and others have faded away.  New philosophies in paddling performance and function have lead to many innovative products.

I’ve scoured the internet to find published prices and updated information on each paddle model from the manufacturer whenever possible.  If there is a major brand I’ve left out, please let me know and I’ll look into it!

Without further ado, here is the 2013 Dragon Boat Paddle Comparison List!


Finish It…Slowly?

How much paddling effort is optimal for different parts of the race?  Certainly very few if any athletes can go 100% effort for 2 continuous minutes without fatigue affecting performance, so for a 500 meter race, it behooves the athlete and coach to know how effort can best be used to pace the race in order to get the best time.

Physiology review!

Our muscles contain several different types of fibers, each with their own attributes that allow us a range of force-exerting capabilities from holding a baby kitten to performing a heavy dead lift.  Motor control is a complex system within the brain but outside the spinal cord, things get simpler.  This is what we can focus on for the scope of this post.  Motor neurons of different sizes connect like wires to muscle fibers, stimulating them to twitch and eventually reach sustained contraction, or tetanus, with enough action potentials/electrical signal.

We can group motor neurons into 2 main groups, large and small.  Likewise muscle fibers can be grouped into 2 main types, Type I and Type IIa/IIx.  Small motor neurons recruit Type I muscle fibers, which are slow to contract, produce low force, but are very fatigue resistant.  Think of the muscles that operate your eyelids.  Unless you’re the average college student, those things stay open most of the day and possibly through late nights in places your mother shouldn’t know about.  Similar muscle fibers operate even when you are walking.  Most healthy individuals can walk and talk with minimal fatigue.

Large motor neurons carry fast electrical signals to your so-called “fast-twitch” muscle fibers.  These fibers take relatively more signal to contract, but once they do, they produce high amounts of force in a short period of time.  They also fatigue quickly.  Going from a walk to a sprint or performing a box jump will fire these Type II muscle fibers.

Muscle Fibers in Paddling

Paddling is a mix of muscle fiber utilization, as many daily activities are as well.  The start of the race is strenuous because the boat is at a standstill and the water feels very thick/heavy.  Taking hard strokes through this situation will favor the Type II fibers.  As the boat reaches race pace and the speed plateaus, less emphasis on power per stroke (and thus less fatigue per stroke) can be applied to simply maintain race pace and hull speed vs accelerate the boat.  Have you ever been on a boat where the crew hits an overrate and keeps it there?  I have (a few times) and it doesn’t end well.  Rating down and reducing power per stroke results in a lower reliance upon Type II fibers for paddling and less fatigue.

Some teams may call powers or some equivalent bump in effort to strategically stay ahead of other racers or simply to fight a gradual decline in hull speed.  Again, taking harder or faster strokes will result in more Type II fibers being recruited, which will contribute to fatigue.

For the finish, is it better to pull a hard and fast acceleration or a gradual one?  It depends.  Highly trained athletes with good conditioning will have a better ability to recruit Type II fibers with less fatigue, but you can’t fight the physiology of trying hard.  Fatigue will hit and sap the performance of any and all who exert 100% effort.  No team wants to be slowing down by the end of the race, after all.  In this sense, a hard and fast finish will mean an athlete can exert themselves for a shorter amount of time before bonking out.

Don’t Bonk!

Don’t Bonk!

Assuming that your boat is dead-even with the competition, travelling at the same speed, and the other crew maintains the same speed through the finish line, your crew will need to accelerate to pass the other boat.  This is where a “finish” is useful in the most basic sense.

Acceleration requires the application of more force and power to the water.  This power ramp can be applied gradually over a period of time or more aggressively in a compressed time frame.  It obviously takes more energy to accelerate quickly and it is relatively more difficult to accelerate a moving boat than it is a stopped one (really!).

A crew that takes a more gradual approach to the finish may reduce the fatigue associated with accelerating the boat but will need to avoid making the finish so long that fatigue causes hull speed to drop before the finish line.  The competition also poses a variable for when and how to run a finish.  Calling the finish after that of other nearby crews potentially demands your boat to accelerate in a shorter amount of time to avoid being passed.  Being “forced” to finish on account of another teams potentially better race piece may result in excess fatigue for your crew and decreased performance.

Most coaches recommend racing your own race, which has plenty of wisdom to it, however when up against close competition the ability to adapt on the fly is very useful when winning is all that matters.


Avoiding Overuse Injuries

Reading through an edition of PTinMotion Magazine, I stumbled upon a quick article citing the findings and recommendations of a Dr. Neeru Jayanthi, MD of Loyola University Medical Center and his efforts to study risk factors of overuse injuries in young athletes ages 8-18.  I haven’t read his actual study, but I’m assuming most of the subjects of the study were not participants of dragon boat paddling.  Even if this were true, the repetitive and strenuous nature of paddling does present a risk for developing overuse injuries in youth and adult paddlers alike.

Dr. Jayanthi’s recommendations were as follows:
(Keep in mind these are angled towards athletes age 8-18)

–  Athletes should not spend more hours per week than their age playing sports

–  Athletes should not spend more than twice as much time playing organized sports as they spend in gym and unorganized play

–  Athletes should not specialize in 1 sport before late adolescence

–  Athletes should not play sports competitively year-round

–  Athletes should take at least 1 day off per week from sports training

For more information click here

Take Home Message for Paddlers

Youth paddling in the Bay Area and many other places around the world is fast becoming a popular practice.  The teamwork, leadership, and athletic benefits of dragon boat as a sport are undeniable in promoting the present and future well being of young people.  What generally concerns me is how far behind dragon boat coaching and training are to more established sports such as basketball, running, or crew just to name a few.  Many coaches are qualified only by their passion and first-hand experience in the sport but not by their education in physical or sport training.  There is also a lack of specific studies regarding the impact of long-term dragon boat paddling on developing and mature athletes.  As a result, dragon boat paddlers and coaches will need to rely on the generalization of information found in studies like Dr. Jayanthi’s to help promote the longevity of their athletes in the sport.

Point by point, here are my recommendations based upon those from the study:

–  Athletes should avoid paddling more than 18 hours per week.  

Yeah, I know extrapolating the study recommendations would mean if you’re 40 years old you should be able to paddle up to 40 hours per week, but that’s literally like a full-time job!  Paddling is not your job.  18 hours of paddling would be 2.5 hours per day, longer if you take a rest day (see below).  I am not aware of any top team on the west coast that practices anywhere close to this amount and not still perform well on an international level.  I believe teams can do more good for performance in far less amount of water time than this number.

–  On-water training should not exceed twice the amount of time spent cross-training

This would often prove to be the strongest cap to on-water paddling time.  For example, if you work out in the gym 1 hour daily, that’s 7 hours per week and your on-water time should not exceed 14 hours per week.  What this allows paddlers to do is stay well-rounded.  Varying activities helps to balance your strengths/weaknesses, rest your affected paddling anatomy, and give you a mental break as well to minimize overuse injuries and mental burnout.

–  For young paddlers, stay active in at least one other sport or athletic endeavor

Again, varying activities not only reduces the risk of overuse injuries in the primary sport, but in growing athletes, helps to develop better kinesthetic skill and diverse interests for future health.  I’m sure you’ve all known at least one person who was injured playing a sport growing up and has become a generally sedentary person  ever since.  Having other interests can help avoid this.  There is also such a push to get kids “serious” about sports earlier and earlier that it’s really quite ridiculous.  The promise of college scholarships, parent bragging rights, and shiny trophies are only part of the hysteria.  This mentality has also lead to progressive rates in sport injuries among young athletes.  With ZERO scholarships available for dragon boat paddlers, the danger of getting too serious, too fast still exists and is preventable.

–  Paddlers, take some time off after the big race

Coaches, set your season goals and training plan around your chosen event and make sure the team gradually progresses towards peaking at that point.  After the main event is completed, give yourself and your paddlers a break.  Organizing long term training into progressive peaks and valleys helps reduce injury and allows for long term improvements to be made.

–  Paddlers should avoid paddling more than 6 days per week

What more can I say about the importance of taking a break?

Use these tips to be a more well-rounded, healthier, and happier athlete!


Paddle Erg Setups

Paddle ergometers are increasingly popular among teams and paddlers looking for objective measures of paddling performance or perhaps dry land training alternatives.  While it’s my opinion that nothing absolutely replaces the training effects of actual water time, I don’t believe there is a single brand of paddling erg around that fails to claim it provides the most realistic dry land paddling experience out there.  The one thing you’ll notice about all paddling ergs is that…drum roll please….they don’t look like dragon boats.  You might say, “of course!  An erg isn’t a boat, my good sir!  A boat is a boat and an erg is an erg!” but when replication of the on-water experience is the goal, taking a look at how closely you can set up the erg to match your on-water setup becomes essential to realistic practice.

Below are the bench metrics I took of one of our local BuK boats, row by row, so that you may try to relate them to your erg setup by adjusting seat height and relative position of bench to the forward foot stop.

Row

A

B

1

11.25

27.75

2

12.5

28.5

3

13.3

29

4

14

29

5

14.25

29.25

6

14.25

29.5

7

13.75

29.25

8

13.1

29

9

12

29

10

11.25

29

A = Bench height over trough (the deepest portion of the hull, closest to the gunnel)

B = Distance of bench front to forward foot stop (linear parallel to long axis of hull, not diagonal from the gunnel)

Units = Inches

Using the 2 numbers you can potentially adjust the seat height and distance relative to the foot brace of the erg to replicate more closely the row that you normally paddle in.  One consideration I thought of for ergs that can replicate the bench to foot stop position is to avoid sitting so high relative to where the cable/rope feeds into the gyro that your “paddle” tip travels above the point during recovery, causing resistance onset to “lag” as one begins the pull phase.

Give it a try!


Moving forward: Plans for the Bay Area’s new OC1 center

Keep your eyes and minds open to supporting this great opportunity!

Moving forward: Plans for the Bay Area’s new OC1 center.

After all….


Get Ergogenic and Get your CAP on!

There is some evidence suggesting that clenching your teeth may actually help you gain an ergogenic advantage in sport performance…at least in terms of strength and power development.

er·go·gen·ic: increasing capacity for bodily or mental labor especially by eliminating fatigue symptoms (merriam-webster)

This ergogenic effect is thought to occur via a complex and still-being-studied neurological phenomenon termed concurrent activation potentiation or CAP.  For example, subjects clenching their jaws showed 12.1% higher rates of force development (RFD) and 15.1% improved results during grip strength testing and even continued to show short term improvements after relaxing their jaws compared to subjects tested without clenching.  Another study showed improved RFD and time to peak force (TTPF) in subjects performing a jump in place.

Hulk strong! Hulk clench teeth!

What does this have to do with paddling?

To date, a quick search on Pubmed reveals there to be 28 studies relating to dragon boat and a majority of them are focusing on the benefits the sport holds for breast cancer survivors.  It will probably be a while before the effects of CAP are studied in relation to dragon boat specifically, but at the cost of clenching vs not clenching your teeth, why not try it?

Imagine your paddlers being 15% stronger and 12% quicker at exerting force for those first few strokes off the line!  If that’s not tapping hidden athletic potential without illegal drugs, I don’t know what is.

Power delivery is most easily applied and also critical to a race start situation.  I say power delivery is “easier” during the start not because it takes less effort, but because the boat and water are relatively stationary to each other, which allows paddlers (both trained and untrained alike) to crank hard with decent efficiency.  As boat speed increases, it takes a great deal more experience and training to efficiently put power into the water (one of the reasons why world-class teams finish races faster with fewer total strokes as novice crews).  Although jaw clenching is probably a very common pre-sport action, dragon boat is a team sport that relies on the sum of its parts.  Imagine your paddlers being 15% stronger and 12% quicker at exerting force for those first few strokes off the line!  If that’s not tapping hidden athletic potential without illegal drugs, I don’t know what is.

The other reason why I propose the CAP effect may work best during the start is that there is currently no evidence that suggests the parameters of jaw clenching on prolonged athletic performance.  So far, all the evidence shows only a concurrent or short term improvement in performance with jaw clenching.  Plus, your masticators may be pretty tired after 2 minutes of continuous clenching.

Maybe jaw clenching is useless, maybe it’s something everybody already does, but it could also be one of the most overlooked areas of sport performance technique.

Of course, if clenching your jaw causes you pain, don’t do it!  Sometimes you just have to use your brain and not your teeth to paddle better.


Leg Length: An Overlooked Measurement?

I took some rough (tape measure) measurements of one of our local BuK boats row by row to learn if and what kind of trends existed in seat metrics.  My thoughts are that while decisions on seating arrangements in the boat are widely multi-factorial, you can’t get around the fixed dimensions of the boat and this establishes a fixed equipment setup that may affect athletic performance, comfort, and health.

Amongst the various measures I made, the set that I thought was most related to paddler function on the boat was about the bench itself.  Here are measures I took:

  • Bench height above the “trough” (lowest point in the hull to front edge of bench)
  • Bench height at midline (mid-hull to front edge of bench)
  • Diagonal reach from front edge of bench at gunnel to corner of first foot stop
  • Straight reach from front edge of bench to first foot stop
Measures taken in a BuK boat rows 1-10

Measures taken in a BuK boat rows 1-10

Results / Discussion

You can see the trend from the graphs that both bench height and effective leg room increase from Row 1 to 5 and then decrease from Row 6 to Row 10.  What this means is that paddlers with longer legs will be more comfortable and, quite possibly more efficient, when sitting in the middle rows.  With the importance of leg drive in paddling efficiency, it makes sense that paddlers who can set their feet in a stable position to transmit force to the boat will be reliant upon finding the correct bench setup that facilitates this.

Typically, crews place heavier and/or taller paddlers in the middle rows.  While it makes sense most of the time that larger athletes may coincidentally have longer leg lengths, it is not always the case.  Anthropomorphically, the ratio of leg length to overall bodily dimensions varies through the population.  If you have a few hours, take this paper for a read!  What this means is that paddlers who are shorter or taller don’t always have shorter or longer legs respectively.

So…

Leg length may be a useful metric to have in setting up your crew through the boat for best results.


Body Lean

How far does a paddler need to lean forward with their trunk to get a long pull?  How much lean is needed for a strong pull?  Probably not as much as you’d think.

Why Armpit to Gunnel Doesn’t Help

What propels the boat?  The paddlers.

How do paddlers propel the boat?  They use their paddles.

Like I’ve mentioned in previous posts, the paddle blade is the business end.  Skillful paddlers can impart both great work and control to their paddle blade as it moves through the water.  Remember that work is defined as force over a distance.  Pulling the paddle faster through the water requires greater force.  The limits of human arthrokinematics and equipment leverage along with a paddlers physical strength determine some max value for work.  It probably looks like a bell-curve.  A paddler is only as strong as they are at that moment, but paddling technique has everything to do with paddling efficiency to reach the peak of that bell curve.

If you’re thinking of paddling from the perspective of how a paddle interacts with the water, the goal becomes how to move your body in a way that applies max leverage to the paddle through some optimum amount of paddle travel/displacement.  Several things happen when a paddler leans all the way down to the gunnel:

–  They lose reach at the paddle blade resulting in a shorter pull.  While it’s true that full lean to the gunnel may put the outside/bottom hand at its farthest forward distance from the bench, it doesn’t mean the same for the paddle blade (the business end).  Full lean takes away from our spinal mobility.  When your joints are taken to a maximum range in one direction, it becomes more and more difficult to move in other directions.  In this case, full trunk flexion takes away from rotation.  Try sitting in a chair, leaning forward and rotating your trunk to either side (don’t hurt yourself).  Now sit up straight and rotate in place.  You can probably rotate farther sitting up than curled over.  Decreased trunk rotation during the reach puts both hands at a similar distance from the bench, making a more vertical paddle angle on the entry, cutting actual reach at the paddle blade.

–  They have less strength.  Leaning forward fully during the reach puts most muscles used in paddling on full or very stretched position.  Glut max, hamstrings, lumbar extensors, lat dorsi, teres major, deltoids, rhomboids/mid and lower trapezei are out of their optimum zone for force production.  Your muscles are happiest and strongest in their mid-range.  For a simple example, think of curling a heavy weight.  It’s tough to start the lift from elbow fully extended and, when you’re fatigued, most folks struggle to get the weight all the way up to finish the rep (elbow fully flexed).  This is because 90 deg of elbow bend is about the middle of the elbow flexor muscle length (and coincidentally the joint angle of about the most mechanically efficient line of pull).

–  They are slower paddlers.  Sitting up from a fully reached position on a pull requires bringing up your whole trunk.  This takes a lot of time and energy because your trunk is a long lever arm.  Think of a long pendulum and how it swings slower than a short one (or takes much more force to swing faster than a short pendulum).  Slower movement sets paddling rate limitations.  When you’re racing fast, the water moves fast and you need to be able to move your paddle faster than the water to exert force on it.  Using a slow body movement like trunk flexion and extension will cap your ability to hold a faster rate to meet fast hull speeds.

LARD’s logo paddlers armpits look close to the gunnel, but don’t be fooled. Their racing technique is very crisp, constrained, efficient, and FAST!

How much lean is optimal?

The short answer is it depends.  The long answer is that there is no one answer and it depends.  (ha)

I am an advocate for a paddle stroke that has minimal trunk flexion/extension during the stroke and relatively more degrees of rotation.  My reason is that rotation allows for the paddle blade to get more positive on the catch and set the blade more forward than a negative/neutral angle, which increases the length of pull (possibly allowing more work to be performed).  Rotation is also mechanically more efficient for generating force to the paddle because the distance of your shoulders to your spine is less than the distance of your shoulders to your hips (shorter torque arm for rotation means less of a mechanical disadvantage compared to hip hinging alone).  One thing I am not a proponent of is sitting straight up and paddling.  It sets your shoulders way above the water line and, with it, your paddle resulting in less water contact and a shorter pull.  It also makes you work harder to resist the forces against the paddle (trunk as a long lever arm resisting paddle force at 90 degrees is the most mechanical disadvantage you can face).

I’ve never really paddled OC, but the stroke generally seems much more constrained than the typical dragon boat technique being used by local rec teams.  Part of the reason for less body excursion and more paddle movement is for energy conservation, which makes sense to me with OC’s racing for many miles.  I can see how allowing *some* increased trunk excursion may be desired in DB because the power gains may outweigh the need for energy conservation when you’re racing for sub 2 minutes or a 100-500 meter race.

On a side note, I think this is one of the reasons why senior/masters level teams can do as well/better than some youth teams is because masters paddlers may have 1) better water “feel” 2) physically less ability to flex their hips/spines so default to more rotation 3) better strength from a longer history of resistance training.


Putting Your Best Leg Forward

The debate rages on (not exactly raging, but it happens) as to what foot position is best for dragon boat paddling.  Some argue the inside leg should be forward, while others state the outside leg forward works best.  Others argue for both feet forward.  Ultimately, I agree with Steve Giles when he writes “get comfortable, keep the weight moving forward, put your feet wherever you want.”

Inside vs Outside Leg Forward

It’s the commonly accepted technique used by C1, C2, and C4 paddlers, so ’nuff said?

DB paddlers with inside leg forward

C1 canoe racing

My thoughts are that the inside leg forward is not easily transferable from canoe racing to dragon boat.  Not having any experience in C1, C2, or C4, I am speculating that putting the opposite leg forward in the canoe helps maintain balance in the boat during the pull.  The canoe is very narrow and does not appear to have very much lateral stability (certainly compared to a dragon boat where you can stand edge to edge and the boat won’t flip).  As I wrote here, paddling exerts a downward force on the boat, but what I didn’t write about initially is that it does depend on where that force is transferred to the boat.  In the case of the C1 canoe, the force exerted on the paddle is transferred to the boat primarily by the forward leg.  When the forward leg is opposite the paddle, it applies equal downforce across the boat midline, preventing an immediate tip-over.  The other aspect of the foot position is related to the half-kneel position of the C1 racer.  You can see in the pic that the paddler can swing their pelvis away from the paddle during the stroke to likely get more power, better balance, and more stroke length.   If anybody has canoe racing XP, please feel free to clarify if my thoughts are accurate.

In a dragon boat, if a pro paddler like Steve Giles felt uncomfortable with this position is that enough reason to avoid it?  My thoughts are that placing the inside leg forward makes your leg drive come from the inside.  If a large portion of stroke power comes from rotation/de-rotation, pushing with your inside leg during the pull phase will tend to push your inside hip back, rotating your pelvis to the INSIDE of the boat.  If you think about it, this is the opposite direction that you want to rotate during the pull phase.

Additionally, leg drive with the inside foot alone makes the paddler work against more torque, giving a mechanical disadvantage and robbing efficiency.  If you took a top-down view the paddle is pulling water a certain distance outside the boat, creating a torque moment.  The axis of rotation is the paddler’s outside ischial tuberosity (butt cheek).  Leg drive with the inside leg creates a torque moment that is farther away from the outside butt cheek, making the paddler work harder to transfer force to the boat.

Another potential reason the inside leg forward is not well applied to DB because the bench prevents the paddler from swinging the pelvis back during leg drive as is possible with kneeling in canoe racing.

No “best” foot forward?  Why not both forward?

Certainly another popular foot position to use in DB is both feet forward, similar to OC racing.  With larger OC craft being quite similar to DB in terms of paddler position relative to the water, I’d say the technique works better than the inside leg forward.  Folks have claimed that leg drive with both legs is stronger than one foot forward, but really?  Your trunk and upper body will always be much weaker than just one of your legs.  IMO, the main limitation to power in paddling is from core strength/stability than leg strength.  You are only as strong as your weakest link.

Both feet forward may reduce the paddler’s ability to rotate on the reach because it tends to lock the pelvis down both in terms of hamstring flexibility and ability to swivel.  If a paddler is able to put relatively more weight over their outside ischial tuberosity and unweight the inside leg slightly during reach, it may make a well-balance stroke….but if you’re already un-weighting the inside leg to get a good pull, why not just put the outside leg forward?


Foot Numbness

If you experience numbness or tingling in your outside/extended foot, you may be experiencing the effects of neural tension.

Background

Your nerves act as your body’s wiring system, carrying electrical impulses between your brain and parts of your body.  They extend from your spinal cord and progressively branch like tree roots as they extend to your fingers and toes.  The nervous system is also like a spider’s web in the sense that pulling/tugging in one area results in tension spread across the whole system.  In other words, there’s only so much “slack” the nervous system has.

When the nervous system is at rest, it functions normally.  When under tension or direct mechanical compression, the tiny blood vessels that sustain the nerve are choked off, resulting in feelings of numbness, tingling, or worse, weakness.

Common Neural Tension with Dragon Boat

In the common dragon boat stroke technique, the position of greatest neural tension to the sciatic nerve running down your leg is during initial entry after terminal recovery.  It is at this point that the paddler is maximally flexed at the hip and the thigh/knee is close to the paddler’s chest.  Some paddlers will have their ankles in dorsiflexion (toes pulled up) and outside knee near full extension (straight) which applies additional tension to the sciatic nerve.  Paddlers with poor technique will also flex their neck, bringing chin to chest or lose core stability and flex their spine (rounded back posture), which adds additional tension to the nervous system.

Slump Test: a common orthopedic assessment for neural tension as the cause for low back pain and leg numbness/tingling. Is this similar to your posture when you paddle?

Other causes for neural tension/compression in Dragon Boat

Other potential causes for neural tension during dragon boat paddling may involve (but is not limited to) ankle position, gunnel pressure against the outside leg, or bench pressure under the thigh/buttocks.  Positioning your outside leg forward with the bottom of your foot turned in to face the midline of the boat is ankle inversion and this may add tension to the peroneal nerve.  Direct pressure of the lower leg and outer knee to the gunnel may also compress the peroneal nerves running into your foot and lower leg.  Pressure of the forward lip of the bench against the bottom of the thigh may contribute to compression of the sciatic nerve.  This last cause may be more common with shorter paddlers due to having shorter legs.  I still intend to take metrics of the BuK boats we have and correlate this to paddler positioning/posture (stay tuned).

Seeking Help/Solutions

If numbness/tingling occurs during paddling but resolves as soon as you stop paddling, double check your technique or ask your coach to ensure you are not falling into the common pitfalls of neural tension described.  You may try a butt pad, reducing pressure/slamming of your outside knee against the gunnel, or keeping your ankle neutral against the footstop.

Certainly, if your symptoms do not resolve after cessation of paddling or you notice a sense of weakness or foot drop(!)  (the phenomenon where you cannot actively lift your toes or dorsiflex your ankle), you should seek medical attention asap as it could represent a variety of serious issues that your physician will assess.


Sacrifice for Success

Best motivation I heard all month

is an excerpt from the video “How Bad Do You Want It.”  Here it is below:

And I’m here to tell you, number one, is that most of you say you want to be successful, but you don’t want it bad.  You just kinda want it.  You don’t want it badder than you want to party.  You don’t want it as much as you want to be cool.  Most of you don’t want success as much as you want to sleep.  Some of you love sleep more than you love success and I’m here to tell you that if you’re going to be successful  you’ve gotta be willing to give up sleep…Don’t call it quits.  You’re already in pain, you’re already hurt.  Get a reward from it.  Don’t go to sleep until you succeed.

So go get some!  Don’t sit around waiting for something to happen.  Good things happening to you starts with just you.