Posts tagged “strength

Get Ergogenic and Get your CAP on!

There is some evidence suggesting that clenching your teeth may actually help you gain an ergogenic advantage in sport performance…at least in terms of strength and power development.

er·go·gen·ic: increasing capacity for bodily or mental labor especially by eliminating fatigue symptoms (merriam-webster)

This ergogenic effect is thought to occur via a complex and still-being-studied neurological phenomenon termed concurrent activation potentiation or CAP.  For example, subjects clenching their jaws showed 12.1% higher rates of force development (RFD) and 15.1% improved results during grip strength testing and even continued to show short term improvements after relaxing their jaws compared to subjects tested without clenching.  Another study showed improved RFD and time to peak force (TTPF) in subjects performing a jump in place.

Hulk strong! Hulk clench teeth!

What does this have to do with paddling?

To date, a quick search on Pubmed reveals there to be 28 studies relating to dragon boat and a majority of them are focusing on the benefits the sport holds for breast cancer survivors.  It will probably be a while before the effects of CAP are studied in relation to dragon boat specifically, but at the cost of clenching vs not clenching your teeth, why not try it?

Imagine your paddlers being 15% stronger and 12% quicker at exerting force for those first few strokes off the line!  If that’s not tapping hidden athletic potential without illegal drugs, I don’t know what is.

Power delivery is most easily applied and also critical to a race start situation.  I say power delivery is “easier” during the start not because it takes less effort, but because the boat and water are relatively stationary to each other, which allows paddlers (both trained and untrained alike) to crank hard with decent efficiency.  As boat speed increases, it takes a great deal more experience and training to efficiently put power into the water (one of the reasons why world-class teams finish races faster with fewer total strokes as novice crews).  Although jaw clenching is probably a very common pre-sport action, dragon boat is a team sport that relies on the sum of its parts.  Imagine your paddlers being 15% stronger and 12% quicker at exerting force for those first few strokes off the line!  If that’s not tapping hidden athletic potential without illegal drugs, I don’t know what is.

The other reason why I propose the CAP effect may work best during the start is that there is currently no evidence that suggests the parameters of jaw clenching on prolonged athletic performance.  So far, all the evidence shows only a concurrent or short term improvement in performance with jaw clenching.  Plus, your masticators may be pretty tired after 2 minutes of continuous clenching.

Maybe jaw clenching is useless, maybe it’s something everybody already does, but it could also be one of the most overlooked areas of sport performance technique.

Of course, if clenching your jaw causes you pain, don’t do it!  Sometimes you just have to use your brain and not your teeth to paddle better.


Power Slings

If you read this well-written article,  you can start to wrap your brain around how these structures relate to paddling specifically.  If you read it and are confused, don’t worry.  In a nutshell, we have groups of muscles that run along the front and back of our bodies that run in a diagonal direction.  Visualizing them on either side of midline, we can see an “X” pattern that forms across our front and back.  Contracting different arms of the X’s allows us to flex, rotate, sidebend, and extend as well as resist external forces that would otherwise move us in those planes.  This X-pattern has been referred to as an anatomical “sling” or sometimes as a power-sling.

Power slings run across our front and back to provide strength and stability

Power slings run across our front and back to provide both strength and stability.  Adamantium provides the rest.

Paddling, like all sports, is 3-dimensional.  Taking a stroke involves muscle action and movement that is tri-planar.  It can be reasoned that by contracting in various patterns, these slings work to stabilize and move our body in 3 dimensions.  What this means is that training in a cross-pattern or diagonal/asymmetric fashion may be more functional and directly applicable to developing strength, performance, and stability in a 3-dimensional sport.

During the recovery phase of the dragon boat stroke, a paddler will flex forward at the trunk as they rotate to face inside the boat.  The act of reaching during the recovery phase (in a left sided paddler) can be thought of as contracting the front sling running from left shoulder to right hip.  Acting alone, this sling would cause the trunk to curl forward, drawing the left shoulder towards the right knee.  To maximize reach by keeping the spine more neutral, the posterior (rear) sling running from right shoulder to left hip must contract to draw the right shoulder blade and top arm up and back (coincidentally establishing positive paddle angle on the reach) keeping the spine straight and long.  The opposite set of slings work for a right-sided paddler.

During the pull phase, the slings quickly and powerfully switch actions.  The front sling running from right shoulder to left hip contract to drive the blade down into the water, initiating the pull.  The rear running from upper right to lower left contract to pull the trunk upright, preserving the rigid A-frame.  Different stroke styles involve different coordination of these slings, but still rely on these slings for movement and stability.

If a paddler is deficient in strength of one or more of these slings, it’s simple to see how this can contribute to visibly faulty paddling technique or simply less power delivered into the water.  Likewise, faulty technique as well as muscular imbalance and lack of stability can lead to an increased risk of injury.

In the future, I’ll be aiming to make some educational media about stretches and exercises to condition these slings.